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Accurate registration of Functional Magnetic Resonance Imaging (FMRI) T2⁎-weighted volumes to same-
subject high-resolution T1-weighted structural volumes is important for Blood Oxygenation Level Dependent
(BOLD) FMRI and crucial for applications such as cortical surface-based analyses and pre-surgical planning.
Such registration is generally implemented by minimizing a cost functional, which measures the mismatch
between two image volumes over the group of proper affine transformations. Widely used cost functionals,
such as mutual information (MI) and correlation ratio (CR), appear to yield decent alignments when visually
judged by matching outer brain contours. However, close inspection reveals that internal brain structures are
often significantly misaligned. Poor registration is most evident in the ventricles and sulcal folds, where CSF
is concentrated. This observation motivated our development of an improved modality-specific cost
functional which uses a weighted local Pearson coefficient (LPC) to align T2⁎- and T1-weighted images. In the
absence of an alignment gold standard, we used three human observers blinded to registration method to
provide an independent assessment of the quality of the registration for each cost functional. We found that
LPC performed significantly better (pb0.001) than generic cost functionals including MI and CR. Generic cost
functionals were very often not minimal near the best alignment, thereby suggesting that optimization is not
the cause of their failure. Lastly, we emphasize the importance of precise visual inspection of alignment
quality and present an automated method for generating composite images that help capture errors of
misalignment.

Published by Elsevier Inc.

Introduction

In Blood Oxygenation Level Dependent (BOLD) Functional Mag-
netic Resonance Imaging (FMRI), T2⁎-weighted volumes (E) are
acquired to create maps of brain activity. Because T2⁎-weighted
volumes are low-resolution and have poor anatomical contrast, these
activation maps are almost always overlaid on a separate, high-
resolution T1-weighted structural volume (S) collected in the same
subject. Inferring any neuroscience conclusion from the activation
map therefore depends on a close spatial correspondence between the
T2⁎- and T1-weighted volumes; high precision in this correspondence
is particularly critical for pre-surgical mapping (Hirsch et al., 2000;
O'Shea et al., 2006; Sunaert, 2006; Yetkin et al., 1996) and cortical
surface based analyses (Argall et al., 2006; Dale et al.,1999; Fischl et al.,
1999; Van Essen et al., 2000, 2001). In order to ensure the
correspondence between anatomy and function, most neuroimaging
data analysis packages perform cross-modality registration. Ensuring
that E is well aligned with S is very important.

Because the T2⁎- and T1-weighted images have very different
contrasts, registering them is considered to be “cross-modality”
registration (although both volumes are collected using MRI). Auto-
mated pair-wise image alignment tools seek improved alignment by
minimizing a cost functional that measures the mismatch between the
two volumes (or whose negative measures the correspondence
between the images). Optimization routines are used to seek the
spatial transformation that minimizes the cost functional between the
transformed volume and its pair. Achieving alignment is consigned to
the successful reduction of the cost functional while avoiding local
minima; however, it is known that for many cost functionals, this
reduction does not necessarily translate into better alignment. An
extreme example is that the Mutual Information (MI) cost of two
volumeswhich are completely out of alignmentmight be better (lower)
than the cost when they were somewhat aligned (Studholme et al.,
1999). Such problems, readily detected by a cursory visualization of the
results, are addressed in software by usingmore robust cost functionals
and heuristics to restrict the transformation parameter space.

Most current image registration packages use generic cost
functionals that do not rely on a specific model of the signal intensity
between the volume pair. For example, AFNI's 3dAllineate and FSL's
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FLIRT have variants of MI and Correlation Ratio (CR) cost functionals.
As developers of the AFNI neuroimaging data analysis package, our
initial impetus for the developments reported herein was a collection
of Echo Planar Imaging (EPI) and structural volumes, presented to us
by several FMRI researchers who had great difficulty in obtaining
decent alignments between their functional time series and their
anatomical reference volumes. These datasets had been processed in
AFNI (http://afni.nimh.nih.gov) (Cox, 1996; Cox and Jesmanowicz,
1999), FSL (http://www.fmrib.ox.ac.uk) (Jenkinson and Smith, 2001),
and SPM (http://www.fil.ion.ucl.ac.uk/spm/) (Collignon et al., 1995),
and none of these packages had produced satisfactory results, despite
numerous attempts at adjusting the available algorithmic parameters.

Because of the failure of these routines, we developed a specialized
cost functional that is optimized for T2⁎- to T1-weighted image
alignment. During this process, we addressed the following questions:
do the transformations obtained by minimizing general purpose
cross-modality cost functionals reliably result in good alignment of EPI
and structural MRI volumes? How can we assess the quality of the
alignment over an entire volume, without an objectively computable
figure of merit, and considering the minimal anatomical contrast in
the EPI data? Answering such questions for real data is difficult. Using
simulated data, where the proper alignment is known, does not fully
take into account the complex variations in noise, contrast, signal
dropouts, and image distortion that occur in practice. In our
examination of the registration results, we rely on meticulous visual
inspections of the detailed anatomical overlap between the image
pairs, facilitated by automatically creating edge-enhanced versions of
the volumes and displaying them in a way that allows one to compare
alignment results obtained with a variety of cost functionals. While
this methodology does not easily allow for precise quantification of
misalignment, it does allow for a coarse scale rating of different
alignment results.

In the Methods section, we first describe a new cost functional
designed for the specific purpose of T2⁎-to-T1 alignment. We then
describe our visual examination methodology for assessing and rating
the results of different alignment algorithms, including our statistical
approach for interpreting the scores. In the Results section, we
illustrate the types of displays the raters used in assessing the
registration results, and then present the results of the statistical
analysis. We conclude with a discussion of two non-controversial but
under-appreciated points: generic image analysis algorithms can
often be improved by modality-specific enhancements, and visual
examination of transformed images is vital to ensure the integrity of
the FMRI data processing stream.

Methods

Generic cross-modality cost functionals

We denote a single T2⁎-weighted EPI volume by E(x) and a T1-
weighted structural volume by S(x), where x is the (discretized) spatial
coordinate vector. Volume pair registration is generically performed by
minimizing some real-valued cost functional C[E(T(x;θ)),S(x)] over a
subset of proper affine transformations parameterized by a vector θ:
{T(•,θ) ∋ det[T]N0 and θ is “reasonable”}. Ad hoc constraints are
usually placed on the parameter vector θ to limit the search space for
the sake of stability and computational efficiency. Joint histogram-
based cost functionals, such as Mutual Information (MI) (Wells et al.,
1996) and Correlation Ratio (CR) (Roche et al., 1998), are commonly
used for cross-modality image registration problems. The underlying
idea is that when the images are properly aligned, the voxel values E
(T(x; θ)) and S(x) should be mutually dependent; that is, knowing the
value of at a particular location x should maximally reduce the
uncertainty about the value of E(T(x; θ)) (and vice-versa) when T(•,θ)
correctly aligns the images, since the image intensities would then be
derived from the same volume of tissue. The various cost functionals

in common use differ primarily in their quantification of “uncertainty
reduction”. While these methods offer the distinct advantage of being
applicable regardless of the types of MRI contrasts in the pair being
registered, we found that they often resulted in improper alignment
even when volumes were fairly well aligned to begin with. This led us
to closely examine their performance and eventually design a T2⁎-to-
T1 specific cost functional that we present next.

T2⁎-to-T1 specific cost functional: Weighted local Pearson correlation

For the purpose of functional-structural alignment, we used
specific information about the properties of T2⁎-weighted EPI and
T1-weighted Magnetic Resonance (MR) volume images to develop a
special purpose cost functional. EPI, with its 2D slice acquisitions and
resulting long Repetition Time (TR), has larger image values (is
brighter) in CSF than in white matter. Structural volumes are dark in
CSF and bright in white matter. Approximately speaking, the contrast
between E(x) and S(x) is reversed; however, this negative correlation
is most noticeable in the intensity difference between CSF and other
tissue types, and is less reliable betweenwhite matter and gray matter.

Structural volumes are also bright in fat, whereas EPI volumes are
universally acquired with fat suppressing saturation RF pulses.
Therefore, all EPI-to-structural registration work must be done with
“skull stripped” structural volumes; it is usually necessary to mask off
the residual fat signature surrounding the EPI volumes as well.

Our initial efforts at improving EPI-structural alignment used the
signed Pearson correlation (PC) between E(T(x; θ)) and S(x) as the cost
functional; minimizing this cost functional tries to find the transfor-
mation T(•,θ) that yields the most negative correlation between the
volume pair. This method worked well in some cases, but not in
others. Close examination of the {E,S} joint histograms showed that
the unreliability of the negative correlation between and in parench-
ymal tissuewas a problem that rendered this method nomore reliable
(on average) than generic MI- or CR-based registration. In the joint
histogram, much of the predictability between E and S was found to
originate at the high values of E and low values of S — that is, in CSF
overlap. Therefore, we decided to emphasize CSF and to enhance
significant negative correlations in our cost functional by making
some simple modifications to the PC calculation.

In our new cost functional, we weight bright regions in the EPI
volume more heavily (but not exclusively); that is, we compute a
spatially weighted correlation coefficient. After some initial experi-
ments, we settled on the weight function w(x)=min(1,E(x) /E90),
where E90 is the 90% point on the cumulative histogram of the EPI
volume, restricted to the EPI brain mask. In addition, to reduce
sensitivity to non-uniformity artifacts – particularly important when
using multi-coil EPI acquisitions – we first compute this correlation
coefficient r only locally, in a neighborhood N(x) about any given point
x, then nonlinearly combine a collection of these r(x) values into the
cost functional:

W xð Þ = ∑
yaN xð Þ

w yð Þ local sum of weights½ $

M x;Fð Þ = 1
W xð Þ ∑

yaN xð Þ
w yð Þ % F yð Þ local weighted mean of volume F½ $

Q x;F;Gð Þ = ∑
yaN xð Þ

w yð Þ % F yð Þ−M x;Fð Þ½ $ % G yð Þ−M x;Gð Þ½ $

local scalar product of F and G½ $

r xð Þ = Q x;E;Sð Þ
Q x;E;Eð Þ % Q x;S;Sð Þ½ $1=2

local weighted correlation coefficient½ $

CLPC E;S½ $ =
∑
xaP

W xð Þ % s r xð Þð Þ % js r xð Þð Þj

∑
xaP

W xð Þ

combined correlation coefficients½ $

where symbols F() and G() denote arbitrary volume images, where the
scalar function s(r)=Tanh−1(0.9999·r) provides a nonlinear stretching

840 Z.S. Saad et al. / NeuroImage 44 (2009) 839–848

http://afni.nimh.nih.gov
http://www.fmrib.ox.ac.uk
http://www.fil.ion.ucl.ac.uk/spm/


to accentuate larger correlations, and where P is a set of neighborhood
centers, chosen so that the union of neighborhoods [xaPN xð Þ covers
the volume of interest in S(x) (i.e., the brain as output by the skull
stripping software, plus a small buffer zone). We call this cost
functional the Local Pearson Correlation (LPC). The use of cross-
correlation is common as a measure of matching in image processing
and in MRI in particular (Collins et al., 1994); however, the LPC
approach differs by its use of the weighting function and of localized
estimates that are later combined nonlinearly. We emphasize that our
algorithm is seeking the transformation T(x, θ) that produces the
smallest (most negative) possible CLPC[E(T(x, θ)),S(x)] (minimizing
CLPC[E(x),S(T−1(x, θ))] is also an option).

The basic neighborhood N(x) is chosen to be a rhombic
dodecahedron (Kepler, 1611) centered at x with size parameter
a=6.5·(S voxel volume)1/3, with volume=2a3. The rhombic dodecahe-
dron (RHDD) centered at the origin is defined as the set

NRHDD 0ð Þ = x;y;zð Þэjxj + jyj≤a andjxj + jzj≤a andjyj + jzj≤af g

The set P, which defines the collection of neighborhoods, is chosen as
the set of integer linear combinations of the 3D face centered cubic
lattice basis vectors (a, a, 0)T, (a, 0, a)T, and (0, a, a)T, such that each
RHDD overlaps at least 50% with the volume of interest; this choice
provides a non-overlapping set of neighborhoods over which to
compute the local correlation coefficients. Rhombic dodecahedrawere
chosen as the basis neighborhoods because, unlike spheres, they can
tile space without overlap or gaps (so that no voxel is uncounted or
double counted in the cost functional), because they are “rounder”
than cubes, and because they and their lattice are easy to describe and
compute.

For completeness, we describe a fewmore implementation details.
To carry out the minimization of C[E, S] over the parameter vector θ,
our software incorporates Powell's derivative-free NEWUOA software
(Powell, 2006), modified slightly to allow for range constraints on the
solution parameters. The vector θ comprises 3 shifts, 3 rotation angles,
3 scale factors, and 3 shears; the user can fix any of these parameters
to zero if desired (e.g., to avoid stretching E(x) in the through-slice
direction). Trilinear interpolation in E(x) is used during the alignment
procedure; output volumes are produced with cubic interpolation by
default. The non-brain tissue voxels are removed from the structural
volume prior to registration, using AFNI's 3dSkullStrip program. An
intensity- and contiguity-based mask from this masked structural
volume is used to define the volume of interest, over which the cost
functional is evaluated. The echo-planar image E(x) that is registered
to the structural S(x) is a representative volume from the FMRI time
series, and is also skull-stripped. In the initial search phase, the images
are smoothed and sub-sampled, and several coarse-fit parameter
vectors are generated and partially optimized using these smoothed
images; in the fine-fit phase, these candidate parameter vectors are
further optimized without image smoothing, and the final result is the
set of parameters θ that gives the smallest value of C[E(T(x;θ)),S(x)]
detected. The cost functional is estimated by pairing voxels from both
E(T(x;θ)) and S(x) that fall within the brain masks of each volume. A
brain voxel originally at location x in volume S is transformed to
location T(x;θ) and paired with the voxel at that location in E.
However, this locationmay fall outside the brainmask of E, and the set
of such outside-the-mask locations will vary with θ. To diminish the
contribution of such voxel pairs, non-brain regions of E(x) are filled
with white noise so that they do not contribute appreciably to the cost
functional. We chose this approach to “mask” the EPI volume, rather
than simply ignore such transformed points, so that each evaluation of
any cost functional C[E(T(x;θ)),S(x)] will use exactly the same number
of voxels. If non-brain voxels in E(T(x;θ)) were simply excluded when
evaluating C, the number of voxels going into the calculation of C
would vary as the overlap between E(T(x;θ)) and S(x) varied with θ,
possibly biasing the registration results.

Registration and assessment

We performed alignments using 4 of the cost functionals present in
AFNI's 3dAllineate program: MI, CR, LPC, and the Hellinger (HEL)
metric (Taneja, 2005) between the joint histogram and the product of
the marginal histograms of E(x) and S(x). The same derivative-free
optimization routines were used for all 4 cost functionals. The EPI
dataset was used as a weighting volume for all of AFNI's registration
tests, as described earlier. To verify that our results are not specific to
our implementation of histogram-based cost functionals, we also
performed the alignments and ratings on the same brain-only volume
pairs using SPM's COREG, which uses an unweighted MI-based cost
functional (Collignon et al., 1995) and FSL's FLIRT with its default
correlation ratio cost functional. COREG uses only 6 parameter rigid-
body transformations, while the AFNI and FSL codes use 12 parameter
general affine transformations. The quality of these 8 various alignment
methods – including the “do nothing” method (ORIG) – was scored as
described below. Only the outcomes for AFNI's registration tools are
presented herein; however, the results for COREG and FLIRT (with and
without a weighting volume) were comparable to the corresponding
AFNI MI and CR results, respectively, indicating that the results of our
study are not strongly dependent on the software implementations of
the cost functional or optimization algorithm.

We did not devise a quantitative metric to compare alignments:
our thesis is that no such automated ideal metric yet exists for
comparing actual T2⁎-weighted to T1-weighted images — otherwise,
such ametric would be used as the cost functional. Therefore, we used
observer judgments of alignment between 27 pairs of EPI and
structural images using different registration methods. These datasets
are distinct from those on which the LPC cost functional was
developed and refined. The whole-brain images in this collection
were acquired at 1.5 and 3.0 Tesla from different scanner manufac-
turers; voxel dimensions averaged about 3×3×3 mm3 in the EPI
volumes and about 1×1×1 mm3 in the structural volumes. For data
collected at the University of Texas, subjects were recruited and
informed consent was obtained with the university's Committee for
the Protection of Human Subjects. Subjects at the Medical College of
Wisconsin gave informed consent in accordance with a protocol
sanctioned by the college's Institutional Review Board. Subjects at the
National Institute of Mental Health (NIMH) underwent medical
screening and provided informed consent in compliance with
NIMH-IRP human subjects committee. To reduce bias, the observers
(authors ZSS, RWC, and DRG) were blinded to the identity of the
registration method used for each dataset. The order of the datasets
was randomized between observers to eliminate order effects, and
each rater rated brain image pairs independently. Raters evaluated
image alignments visually, using a four-point qualitative Likert scale
(Likert, 1932) (1=very poor…4=good). This rating was based on the
match between anatomical features in the T2⁎- and T1-weighted
images, including ventricles, fissures and sulci, and was performed
using software tools described in the next section. A score of 1 was
used for very poor (often grossly erroneous) alignments. A score of 2
was assigned for errors larger than about 5 mm. A score of 3 was
assigned when errors were between 5 and 2 mm. A score of 4 was
reserved for pairs with little visible registration error, about 2 mm or
less. Sample volume pairs and their corresponding rating can be seen
in Figs. 2 and 5.

Out of 648 inter-rater score pairs, there were 13 instances where a
particular alignment was given scores differing by 2 points or more.
Concerned that these might have reflected errors in entering the
scores, these pairs were randomized and re-rated several weeks after
the first rating session, with the raters again blind to the registration
method and to the previous score. After re-rating, none of the 13 brain
pairs had score differences greater than one.

Fig. 1 shows structural (A1) and EPI (A2) images and an overlay of
EPI atop the structural (A3). One common mode of assessing the
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alignment between cross-modality data was to place the crosshairs at
a particular location in one volume and checking whether the
crosshairs in the other volume (at the same (x, y, z) coordinates)
correspond to a similar structure. A second mode, which cannot be
represented in print, consisted of rapidly alternating the display
between one volume and the next. The third common viewing mode
was to layer one volume atop another. In Fig. 1(A3), we have the EPI as
an opaque amber-toned volume with the structural behind it. Opacity
control is possible in this display mode, but we found that it
complicates the composite image and confounds the interpretation.
In our experience, no single visualization mode is optimal for visually
judging the alignment quality. In the first mode, attention is focused to
one location in one volume at a time, making it hard to form a

judgment for alignment over the whole volume. In the second mode,
the difference of contrast and coverage is hard to overcome because of
the salience of such features in a dynamic display. The third mode
gives an overall sense of overlap between the volumes, but
occasionally can be quite misleading, as shown in Fig. 3. Raters were
free to use all of thesemodes in all viewing planes to form their quality
evaluations.

Edge enhancement for registration assessment

To aid raters in their visual assessment of alignment, we devised an
automated method for generating melded volumes with edge
enhancement. Edges are detected in skull stripped EPI and structural

Fig. 1. (A) Structural (A1) and EPI (A2) images, and an overlay of amber-colored opaque EPI atop the structural image (A3). Opacity control is possible in this display mode, but we
found that it complicates the composite image and confounds the interpretation. Crosshairs point to the same spatial coordinates in all images. The two horizontal lines show the
location of the axial slices shown further below (C). (B) Binary volumes S#(x) and E#(x), of detected edges for EPI and structural volumes, respectively. The binary edges are
highlighted in purple (S#) and cyan (E#) in B1 and B2, respectively. B3 shows a melded dual-edge-enhanced image created by the addition of S#(x) and E#(x) to the color overlay of A3.
Dark red is used where structural and EPI edges overlap. (C) Two axial slices corresponding to the horizontal crosshair lines visible in the sagittal views. Alignment ratings for the
images shown in this initial alignment state (ORIG) were 3, 3, 3.
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volumes using AFNI's 3dedge3 program, which performs 3D edge
detection as implemented in the 3DEdge library by Gregoire
Malandain (gregoire.malandain@sophia.inria.fr) (Deriche, 1987;
Monga et al., 1991). Detected edges are turned to binary volumes S#

(x) and E#(x), for EPI and structural volumes, respectively. The binary
edges are highlighted in purple (S#) and cyan (E#) in Figs. 1(B1) and
(B2), respectively. The melded dual-edge image shown in Fig. 1(B3) is
created by the addition of S#(x) and E#(x) to the color overlay of Fig. 1
(A3). Dark red is used where structural and EPI edges overlap. Fig. 1(C)
shows the two axial slices corresponding to the horizontal crosshair
lines visible in the sagittal views. The presence of edges facilitates the
comparison of alignments, as the detected edges clearly delineate
anatomical features in both image types. Raters looked for EPI and
structural edges that overlapped or coursed closely together. Note that
not all internal edges are expected to match well; in particular, some
edges are present in only onemodality. EPIs have lower resolution and
contrast, with spatially varying image quality; nevertheless, many
sub-cortical and cortical edges are clearly visible in the processed EPI
volumes. Based on their knowledge of brain anatomy, raters used the
edges that looked plausible as a guide for judging registration. In
practice, raters viewed volumes in all 3 cardinal planes (sagittal,
coronal, axial), and examined various slices at different locations
within each cut-plane direction, before assigning their scores. Raters
were able to use any of the other visual checking modes described
earlier; however, they usually found the dual-edge-enhanced mode to
be the most useful. The process of generating these edge-enhanced
images for any pair of volumes, as well as their presentation for
viewing is easily automated using the @AddEdge script available in the
AFNI distribution. The use of edges in the assessment process does not
directly bias the results towards any of the methods used for
registration, since none of them explicitly use edge information in
their cost functionals.

While dual-edge images are useful for interactively ascertaining
alignment quality, they have the drawback of being difficult to render
in print where image sizes are significantly smaller than on the screen
and where the colors, brightness, and contrast are difficult to control.

Consequently, in later Figures we show single-edge-enhanced images
where only the EPI edges are overlaid in cyan atop structural images in
gray scale. The degree of correspondence between these automatically
detected EPI edges and readily visible structural features can also be
used to assess image alignment quality; cf. Figs. 2 and 3.

Bad convergence or bad functionals?

An important question is whether the under-performance of a
method is one of optimization (Jenkinson et al., 2002) (Jenkinson and
Smith, 2001), rather than an inappropriate cost functional. In the
former case, the registration may be stuck in a local minimum and a
superior algorithm might achieve better results. In the latter case,
better optimization will not solve the problem. We compared a
particular cost functional's value when it was used to align the volume
to its value computed at the alignment obtainedwhen LPCwas used to
produce a better alignment. We calculated the following as the
percent change in a cost functional between the two alignment results

ΔCX = 200 % CXjLPC−CXjX
! "

=jCXjLPC + CXjXj

where CA|B is the cost functional A estimated between volumes that
were aligned by minimizing cost functional B; ΔCMI, ΔCHEL, and ΔCCR
were estimated for each of the 27 cases studied. To further understand
the differences between cost functionals we mapped the cost
functionals space along the two dimensions that typically experience
the most movement: Translation along the inferior to superior
direction (Tz), and Rotation along the left to right axis (Rx). Starting
with the alignment parameters obtained with LPC, we varied Tz by up
to±10 mm and Rx by up to ±10° in increments of 0.5. The anatomical
volume was repositioned per the new transform and the various cost
functionals recomputed. This resulted in a 40×40 map of each cost
functional about the location of optimal alignment as determined by
LPC and by visual inspection. Such a map reveals the shape and
smoothness of a cost functional's space in the vicinity of the optimal
alignment, albeit for only two of the 12 dimensions possible.

Fig. 2. Melded axial slices showing single-edge enhanced images extracted from the same S and E volume pair under 4 alignment outcomes: ORIG (as acquired), CR, MI, and LPC.
Ratings from each of the three raters are shown below the alignment method's label. Note the better correspondence with LPC of EPI edges, with the anatomical features of the
anatomical image in grayscale. Red arrows point to corresponding central and peripheral zones where improvements in the alignment between ORIG and LPC are evident.
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Statistical score analysis

The collective set of ratings (27 image pairs×3 raters×5 alignment
methods=405 values) was statistically analyzed using contingency
table methods (Agresti, 2002).

We first employed the following log-linear (or Poisson regression)
model to account for the variability of the frequencies of each scoring

case by a three-way table with the registration method (X) and rater
(Z) as nominal variables, and the rank (Y) of a method as an ordinal
variable:

logmijk = λ + λX
i + λY

j + λ
Z
k + μ ivj +ukvj + λ

XZ
ik + ηikvj ð1Þ

where mijk is the expected number among the total number, N, of
registered volumes in the j-th rank (j=1, 2, 3, 4), using the i-th method

Fig. 3. Top Row: A standard overlay of EPI in amber atop a structural image in gray scale after alignment using the CR cost functional (left) and LPC (right). Middle and Bottom Rows:
EPI edges only, overlaid in cyan atop T1-weighted images. Red arrows mark corresponding zones in the two aligned cases that can be used for comparing the quality of registration.
The yellow arrow points to a location where the EPI edge alignment may have worsened. Note that although the CR result appears better in the display mode of the first row, it was
scored worse than the LPC result after scrutiny of the overlap between internal features. Matching brain outlines is not always a good strategy.
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(i=1, 2, …, 5), rated by the k-th rater (k=1, 2, 3); λ is the overall effect
(constant), λi

X, λj
Y, and λk

Z are the main effects corresponding to the
three variables; interactions between method and rating are modeled
as the product of a method-dependent factor μi and quality rank vj
(vj=1 for “very poor”, 2 for “poor”, 3 for “moderate”, and 4 for “good”),
between method and rater by the product of a rater-dependent factor
φk and quality rank vj, between method and rater by λik

XZ, and between
the three variables by the product of a factor ηik and quality rank vj.
The observed number of registered volumes in the j-th rank using the
i-th method rated by the k-th rater is assumed to follow a Poisson
distribution with expected value mijk. Since each rater scored all the
combinations (135 volume pairs, 27 volumes×5 methods), the rater
main effect λk

Z is set to 0. Also, for the same reason, the interaction
between rater andmethod, λik

XZ, was redundant.We therefore dropped
those two components from Eq. (1) to obtain Eq. (2):

logmijk = λ + λX
i + λY

j + μ ivj +ukvj + ηikvi ð2Þ

Model (2) was fitted and analyzed using the generalized linear
model function in R (R Development Core Team, 2008) through the
analysis of deviance on the rating data. The result indicates a non-
significant rater effect φk on rating (deviance=0.044, df=2, p=0.978,
based on an approximate χ2 distribution), consistent with Fig. 4,
which graphically shows little difference between inter-rater means
and standard errors of the mean (SEMs). Also, no significant
interaction was found between rater and method ηik on rating
(deviance=0.145, df=8, p≈1.0, based on an approximate χ2 distribu-
tion). Thus rater (Z,k) was dropped entirely to form a simplified model
for the expected distribution of counts in each entry in a 2-way
contingency table:

logmij = λ + λX
i + λY

j + μ ivj ð3Þ

Model comparison through the analysis of deviance shows that the
simplification from (2) to (3) is well justified (likelihood ratio
statistic=0.189, df=10, p≈1.0, based on an approximate χ2 distribu-
tion). A further model reduction, where the interaction term between
alignment method and rating μiνj is assumed to be zero in model (3),
results in a significantly worse fit, which suggests that there is a strong
association between method and rating (likelihood ratio statis-
tic=80.34, df=4, p≈0.0, based on an approximate χ2 distribution).

One interest of the analysis lies in quantitative estimates of the
registration method's differential effect on rating, parameterized by μi

inmodel (3). If a contrast between twomethod effects, μa–μb, turns out
positive and statistically significant, we can reasonably infer that the
ath method provides a better registration than the bth method;
moreover, the relative success of a method can be quantified by its
odds of being identified with one unit of higher score (e.g., good
instead of moderate), estimated to be exp(μa–μb) times higher for the
ath method than for the bth method.

Results and discussion

Comparisons of generic functionals to LPC

Fig. 2 shows melded images for the data as acquired (ORIG), and
after alignmentwith CR, LPC, andMI cost functionals, respectively. The
scores given by the three raters are shown in white under the
alignment cost functional label. Examination of the edge-highlighted
views clearly shows that LPC resulted in an improved alignment from
the ORIG case; improvement is evident at internal structures such as
the ventricles, and at sulcal edges. Red arrows point to corresponding
central and peripheral zones where improvements in the alignment
between ORIG and LPC are evident. Alignments with CR and MI
methods were rated as poor, as indicated by the lack of correspon-
dence between EPI internal edges and the anatomy. In this example,
one can observe that CR and MI alignments are poor without the use
of edge enhancement, since there is an obvious volume contour
mismatch in the frontal areas between EPI and anatomy. However,
judging alignments primarily on brain outlines can be very mislead-
ing, as shown in Fig. 3, which shows two alignments of another {E, S}
volume pair. In the top row, the CR alignment on the left appears
better based on the matching of brain outlines, but it was the LPC
alignment on the right that was deemed superior by all raters after
examining the edge-enhanced images such as those shown in the
lower part of Fig. 3. Red arrows point to image zones that show an
improved alignment with LPC. A yellow arrow is used to point to a
location that appears to have gotten worse in the LPC case. This
mismatch between the EPI edge and the nearby structural edge could
be due to nonlinear image distortion in the EPI volume, or to the fact
that not all edges in the EPI data correspond to obvious structural
features. The EPI edges a few cm posterior to the yellow arrow match
the sulci visible in the structural image quite well, so if the problem is
due to nonlinear image warping, the distortion must be quite local.
The mismatch in the exterior brain contours in inferior and frontal
areas is likely due to susceptibility induced signal dropout in the EPI
volume.

Fig. 4 shows the rating statistics for the various methods used. Bars
represent themean±SEM rating from each of the raters for each of the
cost functionals. The LPC method had the highest average score and
the smallest SEM. Fig. 5 shows the frequency with which a score was
assigned to a particular method, and also shows sample images from
each score. The LPC method was assigned the highest score 88% of the
time, with MI and HEL distant seconds at 50% and 47%, respectively.
Implementations of histogram-based methods in FSL (CR) and SPM
(MI) performed no better than their AFNI counterparts. The four image
pairs represent sample alignment cases where the scoring was
unanimous. The ‘very poor’ case is clearly far out of alignment. In
the ‘poor’ and ‘moderate’ cases, red ellipses mark zones where edge
mismatch led raters to assign the score. The small red mark provides a
1 cm scale for these images.

Fig. 6 shows the extent of inter-rater agreements and disagree-
ments. Pairs of raters gave the same score 66% of the time (sum of
diagonal entries) and scores differed by 1 point (off diagonal) 34% of
the time.

Table 1 summarizes the statistical analysis of the model Eq. (3): (a)
LPC is superior to all other methods (cf. the LPC column/row). For
example, the likelihood that LPC gives a ‘good’ registration instead of a
‘moderate’ one is estimated to be exp(1.370)≈3.94 times higher than

Fig. 4. Rating statistics for the various methods used. Bars represent the mean±SEM
rating from each of the raters for each of the cost functionals. Also see Table 1 for results
of a more detailed statistical analysis of the scores.
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MI. (b) HEL and MI are significantly better than ORIG (cf. the ORIG
column/row). For example, MI is exp(0.226)≈1.25 times as likely as
ORIG to register an image with one unit of higher score. (c) CR, HEL,
and MI are not significantly different from each other (cf. the CR and
HEL columns/rows).

In addition to the blinded ratings and statistical tests obtained on
the 27 sample datasets, we tested LPC alignment on 22 additional
dataset pairs judged to be of good quality. We found that LPC
alignment (scored by ZSS only and with no randomization) improved
from an average of 2.9 (pre-registration) to 4.0. For those high quality
datasets, the other cost functionals performed equally well. Further-

more, various beta testers have successfully applied LPC to more than
100 new cases. While no systematic ratings have been done on those
additional data pairs, we conclude that the algorithm and its
implementation are reasonably robust. (Readers that have AFNI
installed on their computers can easily test the LPC registration
method using the script align_epi_anat.py, which is a part of AFNI's
distribution.)

Bad convergence or bad cost functionals?

Changes of cost functionals evaluated at the LPC solutions (ΔCMI,
ΔCHEL, and ΔCCR) were positive in 80 out of the 81 estimates, and
ranged between −1% and +150%. In all but one case, MI, HEL, and CR
cost functionals increased from their minimal values (became worse)
at the alignment parameter vector computed with LPC, regardless of
whether the alignment with LPC was judged better by the raters. (The
single tiny observed decrease was observed with the CR cost
functional.) These findings indicate that the problem of obtaining
better alignments with current joint-histogram based functionals is
not one of optimization. The problem lies with the cost functionals not
being globally minimal at the better alignment. This also helps explain
why, in some cases, alignments got worse with non-LPC methods,
even when S and E were originally in good alignment. Despite this
observation, it is still possible that non-LPC methods may exhibit
better minima that are just not being reliably found by the
optimization. This could be the case if these cost functionals were
highly oscillatory in the vicinity of the optimal alignment. However,
Fig. 7 indicates otherwise. The figure is a juxtaposition of 16 cost
functional maps created using four functionals on four pairs of
datasets. Columns show maps for the same cost functional and rows
show maps from different pairs. Each of the sixteen maps show a cost
functional, normalized to [0,1] as a function of ΔRx and ΔTz. The
lowest value of the map (dark red) coincides with the best (lowest)
cost functional in the range of parameters tested. The white dot in the

Fig. 5. Frequency with which a score was assigned to a particular method. The raw counts from this figure form the contingency table analyzed using Eq. (3). The four image pairs
represent sample alignment cases where the scoring was unanimous. The ‘very poor’ case is clearly out of alignment. In the ‘poor’ and ‘moderate’ cases, red ellipses mark some of the
zones where edge mismatches led raters to assign the score. The small red right-angle provides a 1 cm scale.

Fig. 6. Scatter plot of the ratings by each pair of raters. A small random value was added
to each score to make the individual points visible; otherwise, all points at a particular
rating would overlap because of the discrete-valued scoring. The circles are sized to
reflect the fraction of data points in each score combination. The Spearman correlation
coefficients for the 3 pairs of raters are: ρ1,2=0.84, ρ1,3=0.78, ρ2,3=0.84.
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center of each map indicates the parameters for which alignment was
optimal per the LPC solution, which in each case resulted in a very
good alignment. Iso-contours are added at levels 0.7, 0.4 and 0.1 to
help visualize the terrain. The first row shows results from a simulated
pair, where the “EPI” volume was a grayscale-inverted version of the
anatomy with additional noise and smoothing by a 4 mm FWHM
Gaussian kernel. This simulated case is intended to show themap for a
case where near perfect alignment is possible. All four maps reach a
minimum at the expected location, with the CR method showing the
widest contours.

The second row was generated using one of the high-quality
dataset pairs. In this case, all cost functional maps reached their
minima very close to the optimal alignment position. This was
expected given that the volume pair aligned very well with all
methods, but it is instructive to note that the cost functional terrains
appear equally smooth. The third row was generated using the same
image pair illustrated in Fig. 3, whichwas in very good alignment from
the start (score of 4,4,4), although there was significant EPI signal drop
out in anterior and inferior regions. Therefore the unknown ideal
alignment should be in the vicinity of the white dot. The maps show
that all non-LPC maps do not reach a minimum in the vicinity of
optimal alignment nor do they exhibit the high-frequency structure of
many local minima that could easily derail an optimization routine.

While there is a local minimum (light blue) for cost function MI in the
vicinity of the optimal alignment, a well-implemented optimization
would likely not get stuck there. Maps from the last row were
assembled from a pair with an EPI dataset of poor contrast that aligned
well only with LPC. In this case we can see a minimum in the CR map;
however, it occurs at parameters that would result in a poor alignment
between E(x) and S(x).

As expected from the visual inspection and optimization studies,
non-LPC cost functionals do not always reach a minimum at the
location of alignment. Such behavior has been reported for MI-based
methods, but for different dataset pair types (Penney et al., 1998;
Pluim et al., 2000). However, the maps for all cost functionals are
smooth, revealing one clear minimum in the range of parameters
examined. This reinforces the argument that better optimization
would not yield better alignment. It is difficult to pinpoint exactly why
the non-LPC cost functionals failed with some datasets. One possible
explanation is that the presence of certain artifacts in the image, such
as significant non-uniformity or signal dropouts, could make two
images appear more predictive of each other, per the cost functional,
when they are out of alignment. Recent improvements (Gan et al.,
2008), which add gradient information in addition to image intensity
toMI cost functionals are promising, andmay prove towork as well as
LPC on the difficult cases.

The performance of the LPC functional was improved with the
incorporation of the weighting scheme. That same weighting scheme
was also used to produce the results of the other AFNI cost functionals,
although it may not be optimal for them. However, in our attempts to
improve the alignment results, we began by trying various weighting
schemes with joint histogram-based methods, but we found no single
scheme that resulted in improved alignment in the majority of cases
studied. The lack of robust improvement with simple modifications of
joint histogram-based methods led us to the development of LPC.

The LPC cost functional has been tested and optimized for within-
subject registration. We do not yet know howwell this method would
perform when S and E are from different subjects, or if S were a T1-
weighted template image averaged frommany subjects, or howwell it
would work with high-order non-affine transformations. Although
the LPC method has some built-in allowance for image non-
uniformity, it might need adjustments to work well with heavily
shaded images, such as those acquired from a single local RF coil.

Conclusions

We emphasize that our 27 primary test cases all posed difficult
registration problems: it was reports of these recurring troubles that
led us to examine the EPI-structural alignment problem closely.
However, these datasets are representative of the quality of data often
acquired at different centers. With this real data, the problem with
improving alignment between EPI and structural volumes is not one of
implementation or of the optimization algorithm. Rather, generic
histogram-based methods are not necessarily minimized at the best

Table 1
Statistical comparison of the ratings of 5 registration methods: μi is the effect of registration method Xi on the ratings; the two-sided p-values are computed from the z-scores for the
given μi contrast (e.g., the p-value for MI to be superior to CR is only 0.15, even though μMINμCR)

Method Xi ORIG CR HEL MI LPC

μi−μ1 p μi−μ2 p μi−μ3 p μi−μ4 p μi−μ5 p

i=1: ORIG – – −0.19 0.21 −0.39 0.01⁎ −0.41 8E-3⁎⁎ − 1.78 3E-11⁎⁎⁎
i=2: CR 0.19 0.21 – – −0.20 0.19 −0.23 0.15 −1.60 2E-9⁎⁎⁎
i=3: HEL 0.39 0.01⁎ 0.20 0.19 – – −0.03 0.87 −1.40 2E-7⁎⁎⁎
i=4: MI 0.41 8E-3⁎⁎ 0.22 0.15 0.03 0.87 – – −1.37 3E-7⁎⁎⁎
i=5: LPC 1.78 3E-11⁎⁎⁎ 1.59 2E-9⁎⁎⁎ 1.39 2E-7⁎⁎⁎ 1.37 3E-7⁎⁎⁎ – –

Significance codes.
⁎ pb0.05.

⁎⁎ pb0.01.
⁎⁎⁎ pb0.001.

Fig. 7. 4×4matrix of maps of cost functionals, individually normalized to the range [0,1],
versus the ΔRx rotation and ΔTz translation parameters. The optimal alignment, found
with the LPC method, is at ΔRx=ΔTz=0 and is marked by a white dot in each map. Iso-
contours are drawn at values 0.7, 0.4, and 0.1, with the latter hidden at times under the
white dot. Rows contain maps from different image volume pairs. The top two rows
were from pairs where all methods succeeded in registering the volumes. The bottom
two rows were from pairs where only LPC resulted in a good registration.
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alignment. We have shown that the modality-specific LPC cost
functional, which utilizes some model of the image contrast, is more
accurate and robust.

While the LPC method is fully automated and highly reliable, we
nonetheless recommend that users always stay close to their data as it
is transformed by the diverse processing steps used in FMRI. Despite
the marked improvements with LPC and the robustness of the
approach, we advocate that users assess registration quality by visual
inspection using the edge-enhancedmethod. Our results demonstrate
that a quick look at whether the brain outlines overlap is wholly
inadequate. The generation of composite images and their presenta-
tion for examination is fully automated in AFNI and adds only a few
minutes to the data processing time for each subject. It is critically
important that registration quality be assessed visually before reliance
is placed on the concordance between activationmaps and anatomical
features. Since the execution time for LPC registration is about 30%
faster than for MI, CR, or HEL registration (in the AFNI implementa-
tion, LPC alignment takes about 300 CPU s on a 2 GHz Intel CPU), there
is no particular penalty in using this new cost functional. With
derivative-free optimization software such as NEWUOA (Powell,
2006), it is relatively straightforward to add the LPC cost functional
to image alignment programs.
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